Multi-label learning is often used to mine the correlation between variables and multiple labels, and its research focuses on fully extracting the information between variables and labels. The $\ell_{2,1}$ regularization is often used to get a sparse coefficient matrix, but the problem of multicollinearity among variables cannot be effectively solved. In this paper, the proposed model can choose the most relevant variables by solving a joint constraint optimization problem using the $\ell_{2,1}$ regularization and Frobenius regularization. In manifold regularization, we carry out a random walk strategy based on the joint structure to construct a neighborhood graph, which is highly robust to outliers. In addition, we give an iterative algorithm of the proposed method and proved the convergence of this algorithm. The experiments on the real-world data sets also show that the comprehensive performance of our method is consistently better than the classical method.
translated by 谷歌翻译
Reinforcement learning (RL) problems can be challenging without well-shaped rewards. Prior work on provably efficient RL methods generally proposes to address this issue with dedicated exploration strategies. However, another way to tackle this challenge is to reformulate it as a multi-task RL problem, where the task space contains not only the challenging task of interest but also easier tasks that implicitly function as a curriculum. Such a reformulation opens up the possibility of running existing multi-task RL methods as a more efficient alternative to solving a single challenging task from scratch. In this work, we provide a theoretical framework that reformulates a single-task RL problem as a multi-task RL problem defined by a curriculum. Under mild regularity conditions on the curriculum, we show that sequentially solving each task in the multi-task RL problem is more computationally efficient than solving the original single-task problem, without any explicit exploration bonuses or other exploration strategies. We also show that our theoretical insights can be translated into an effective practical learning algorithm that can accelerate curriculum learning on simulated robotic tasks.
translated by 谷歌翻译
In recent years, large amounts of effort have been put into pushing forward the real-world application of dynamic digital human (DDH). However, most current quality assessment research focuses on evaluating static 3D models and usually ignores motion distortions. Therefore, in this paper, we construct a large-scale dynamic digital human quality assessment (DDH-QA) database with diverse motion content as well as multiple distortions to comprehensively study the perceptual quality of DDHs. Both model-based distortion (noise, compression) and motion-based distortion (binding error, motion unnaturalness) are taken into consideration. Ten types of common motion are employed to drive the DDHs and a total of 800 DDHs are generated in the end. Afterward, we render the video sequences of the distorted DDHs as the evaluation media and carry out a well-controlled subjective experiment. Then a benchmark experiment is conducted with the state-of-the-art video quality assessment (VQA) methods and the experimental results show that existing VQA methods are limited in assessing the perceptual loss of DDHs. The database will be made publicly available to facilitate future research.
translated by 谷歌翻译
Knowledge tracing (KT) aims to leverage students' learning histories to estimate their mastery levels on a set of pre-defined skills, based on which the corresponding future performance can be accurately predicted. In practice, a student's learning history comprises answers to sets of massed questions, each known as a session, rather than merely being a sequence of independent answers. Theoretically, within and across these sessions, students' learning dynamics can be very different. Therefore, how to effectively model the dynamics of students' knowledge states within and across the sessions is crucial for handling the KT problem. Most existing KT models treat student's learning records as a single continuing sequence, without capturing the sessional shift of students' knowledge state. To address the above issue, we propose a novel hierarchical transformer model, named HiTSKT, comprises an interaction(-level) encoder to capture the knowledge a student acquires within a session, and a session(-level) encoder to summarise acquired knowledge across the past sessions. To predict an interaction in the current session, a knowledge retriever integrates the summarised past-session knowledge with the previous interactions' information into proper knowledge representations. These representations are then used to compute the student's current knowledge state. Additionally, to model the student's long-term forgetting behaviour across the sessions, a power-law-decay attention mechanism is designed and deployed in the session encoder, allowing it to emphasize more on the recent sessions. Extensive experiments on three public datasets demonstrate that HiTSKT achieves new state-of-the-art performance on all the datasets compared with six state-of-the-art KT models.
translated by 谷歌翻译
Data-Free Class Incremental Learning (DFCIL) aims to sequentially learn tasks with access only to data from the current one. DFCIL is of interest because it mitigates concerns about privacy and long-term storage of data, while at the same time alleviating the problem of catastrophic forgetting in incremental learning. In this work, we introduce robust saliency guidance for DFCIL and propose a new framework, which we call RObust Saliency Supervision (ROSS), for mitigating the negative effect of saliency drift. Firstly, we use a teacher-student architecture leveraging low-level tasks to supervise the model with global saliency. We also apply boundary-guided saliency to protect it from drifting across object boundaries at intermediate layers. Finally, we introduce a module for injecting and recovering saliency noise to increase robustness of saliency preservation. Our experiments demonstrate that our method can retain better saliency maps across tasks and achieve state-of-the-art results on the CIFAR-100, Tiny-ImageNet and ImageNet-Subset DFCIL benchmarks. Code will be made publicly available.
translated by 谷歌翻译
Vision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. Code and pre-trained models are available at https://github.com/google-research/big_vision
translated by 谷歌翻译
Semantic segmentation usually benefits from global contexts, fine localisation information, multi-scale features, etc. To advance Transformer-based segmenters with these aspects, we present a simple yet powerful semantic segmentation architecture, termed as IncepFormer. IncepFormer has two critical contributions as following. First, it introduces a novel pyramid structured Transformer encoder which harvests global context and fine localisation features simultaneously. These features are concatenated and fed into a convolution layer for final per-pixel prediction. Second, IncepFormer integrates an Inception-like architecture with depth-wise convolutions, and a light-weight feed-forward module in each self-attention layer, efficiently obtaining rich local multi-scale object features. Extensive experiments on five benchmarks show that our IncepFormer is superior to state-of-the-art methods in both accuracy and speed, e.g., 1) our IncepFormer-S achieves 47.7% mIoU on ADE20K which outperforms the existing best method by 1% while only costs half parameters and fewer FLOPs. 2) Our IncepFormer-B finally achieves 82.0% mIoU on Cityscapes dataset with 39.6M parameters. Code is available:github.com/shendu0321/IncepFormer.
translated by 谷歌翻译
A common scenario of Multilingual Neural Machine Translation (MNMT) is that each translation task arrives in a sequential manner, and the training data of previous tasks is unavailable. In this scenario, the current methods suffer heavily from catastrophic forgetting (CF). To alleviate the CF, we investigate knowledge distillation based life-long learning methods. Specifically, in one-tomany scenario, we propose a multilingual distillation method to make the new model (student) jointly learn multilingual output from old model (teacher) and new task. In many-to one scenario, we find that direct distillation faces the extreme partial distillation problem, and we propose two different methods to address it: pseudo input distillation and reverse teacher distillation. The experimental results on twelve translation tasks show that the proposed methods can better consolidate the previous knowledge and sharply alleviate the CF.
translated by 谷歌翻译
Efficient ObjectGoal navigation (ObjectNav) in novel environments requires an understanding of the spatial and semantic regularities in environment layouts. In this work, we present a straightforward method for learning these regularities by predicting the locations of unobserved objects from incomplete semantic maps. Our method differs from previous prediction-based navigation methods, such as frontier potential prediction or egocentric map completion, by directly predicting unseen targets while leveraging the global context from all previously explored areas. Our prediction model is lightweight and can be trained in a supervised manner using a relatively small amount of passively collected data. Once trained, the model can be incorporated into a modular pipeline for ObjectNav without the need for any reinforcement learning. We validate the effectiveness of our method on the HM3D and MP3D ObjectNav datasets. We find that it achieves the state-of-the-art on both datasets, despite not using any additional data for training.
translated by 谷歌翻译
Given a few seed entities of a certain type (e.g., Software or Programming Language), entity set expansion aims to discover an extensive set of entities that share the same type as the seeds. Entity set expansion in software-related domains such as StackOverflow can benefit many downstream tasks (e.g., software knowledge graph construction) and facilitate better IT operations and service management. Meanwhile, existing approaches are less concerned with two problems: (1) How to deal with multiple types of seed entities simultaneously? (2) How to leverage the power of pre-trained language models (PLMs)? Being aware of these two problems, in this paper, we study the entity set co-expansion task in StackOverflow, which extracts Library, OS, Application, and Language entities from StackOverflow question-answer threads. During the co-expansion process, we use PLMs to derive embeddings of candidate entities for calculating similarities between entities. Experimental results show that our proposed SECoExpan framework outperforms previous approaches significantly.
translated by 谷歌翻译